If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-4x-51=0
a = 3; b = -4; c = -51;
Δ = b2-4ac
Δ = -42-4·3·(-51)
Δ = 628
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{628}=\sqrt{4*157}=\sqrt{4}*\sqrt{157}=2\sqrt{157}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{157}}{2*3}=\frac{4-2\sqrt{157}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{157}}{2*3}=\frac{4+2\sqrt{157}}{6} $
| 10x+120=14x | | 2x+270=360 | | 5(x+8=75 | | 5x-30+4x=90 | | 42+3x=99 | | 3(b-4)=30 | | 2/9x+9/8=-2/3 | | 9(a+81)=-99 | | 7x2+1=6 | | 4p–1=15 | | 8(x-40)=400 | | 2x^2-22x=-4x^2-3x-14 | | W^2-10w=-12 | | –6+7j=j | | -2x+10+7x=16x+1 | | 10y-2=88 | | -4(w-20)=20 | | 2q=-3q+9 | | -9(x+36)=72 | | 2.3x-12=5.5x+26.4 | | 8x+9=-8x-7 | | -4/5(20n-5)-3=193 | | -3(5x+5)=5(-3x+5) | | x^2−12x+20=0 | | 3x-5x+7=x-5+12 | | x2−12x+20=0 | | 7/22(44)=2r | | 15=x÷5 | | 2d=3d−10 | | 16x+2=11x-3 | | x-11.66=0.2x | | -d/5-128-12=-4 |